A Database Model for Querying Visual Surveillance Videos by Integrating Semantic and Low-Level Features

نویسندگان

  • Ediz Saykol
  • Ugur Güdükbay
  • Özgür Ulusoy
چکیده

Automated visual surveillance has emerged as a trendy application domain in recent years. Many approaches have been developed on video processing and understanding. Content-based access to surveillance video has become a challenging research area. The results of a considerable amount of work dealing with automated access to visual surveillance have appeared in the literature. However, the event models and the content-based querying and retrieval components have significant gaps remaining unfilled. To narrow these gaps, we propose a database model for querying surveillance videos by integrating semantic and lowlevel features. In this paper, the initial design of the database model, the query types, and the specifications of its query language are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic retrieval of events from indoor surveillance video databases

With the existence of “semantic gap” between the machine-readable low level features (e.g. visual features in terms of colors and textures) and high level human concepts, it is inherently hard for the machine to automatically identify and retrieve events from videos according to their semantics by merely reading pixels and frames. This paper proposes a human-centered framework for mining and re...

متن کامل

A Multiple Instance Learning and Relevance Feedback Framework for Retrieving Abnormal Incidents in Surveillance Videos

This paper incorporates coupled hidden Markov models (CHMM) with relevance feedback (RF) and multiple-instance learning (MIL) for retrieving various abnormal events in surveillance videos. CHMM is suitable for modeling not only the object’s behavior itself but also the interactions between objects. In addition, to address the challenges posed by the “semantic gap” between high level human conce...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information

With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...

متن کامل

A Scenario-Based Video Surveillance Data Modeling and Querying System

Automated video surveillance has emerged as a trendy application domain in recent years, and accessing the semantic content of surveillance video has become a challenging research area. The results of a considerable amount of research dealing with automated access to video surveillance have appeared in the literature. However, event models and content-based access to surveillance video have sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005